Synthesis of 1-Fluoro-2-Phenylvinyl Piperidino Ketones

Yanchang Shen* and Yuefen Zhou

Shanghai Institute of Organic Chemistry, Academia Sinica, 345 Lingling Lu, Shanghai 200032, China

A new palladium-catalysed synthesis of 1-fluoro-2-phenylvinyl piperidino ketones is described.

(2*E*)-, (2*E*,4*E*)-Unsaturated amides constitute an important class of compounds occurring widely in a number of natural products which show biological activities;¹ *e.g.* the local anaesthetic activity of *N*-dialkylaminoalkyl cinnamamides 1 has been reported ² and 1,3-benzodioxol-5-ylvinyl piperidine ketone 2 has anticonvulsant activity. As unusual behaviour is

often ascribed to materials as the result of the introduction of fluorine atoms, and fluorine-containing compounds are useful or show potential in medicinal chemistry,³ it was of interest to prepare and evaluate pharmacologically a series of N-alkyl(2-aryl-1-fluorovinyl)carboxamides. However, there is no report of the synthesis of 2-aryl-1-fluorovinylcarboxamides **3** in the literature.

Results and Discussion

Recently we reported a palladium-catalysed reaction of bromoacetic ester with aldehydes in the presence of tributylphosphines leading to the conversion of aldehydes into a, \beta-unsaturated esters with high stereoselectivity in 52-85% yields.⁴ This methodology has been successfully applied to the synthesis of fluorinated analogues, α -fluoro- α , β -unsaturated N-alkylamides 3. A mixture of benzaldehyde, fluoroiodomethyl piperidino ketone, tributylarsine and a catalytic amount of palladium(0) (10 mol%) was stirred at 110 °C for 24 h; 1-fluoro-2-phenylvinyl piperidino ketone 6d was obtained in 56% yield; there was no improvement in yield with increased reaction time or temperature. Tributylphosphines could also be used in this reaction, but the yield was lower (40%). In order to improve the yield of the desired α fluoro- α , β -unsaturated amides, the more reactive triethylarsine was used instead of tributylarsine; thus the yield of the ketone 6d could be raised to 64% with high Z stereoselectivity (Z/E =95/5), but a 9% yield of 2-phenylvinyl piperidino ketone 7d was also obtained with high E selectivity (E/Z = 100/0) (the total yield was 73%, and two products could be easily separated by chromatography).

We then attempted the reaction of a series of aldehydes 4 with fluoroiodomethyl piperidino ketone 5 and triethylarsine under palladium catalysis (Scheme 1), the metal always being added in the form $Pd(PPh_3)_4$. The results are collected in Table 1.

Using this method, the α -fluoro- α , β -unsaturated amides could be obtained in 45–68% yields, and the α , β -unsaturated

Com- pound ^b	Synthesis of α -fluoro- α , β -unsaturated amides 6"				
	R	Yield (%)		Z: E ⁴	
		6	7	6	7
1	4-CIC ₆ H ₄	64	16	93:7	0:100
b	4-NO ₂ C ₆ H ₄	68	19	86:14	0:100
c	4-FC ₆ H₄	56	9	95:5	0:100
d	C ₆ H ₅	64	9	95:5	0:100
e	1,3-Benzodioxol-5-yl	47	4	93:7	0:100
f	(E)-PhCH=CH	50	4	62:38	37:63
g	2-Furyl	45	7	86:14	0:100
ĥ	c-C ₆ H ₁₁ ^e	50	16	71:29	0:100
i	2-Naphthyl	50	6	93:7	0:100
j	$2,4-Cl_2C_6H_3$	54	14	85:15	0:100
k	2-BrC ₆ H ₄	51	9	89:11	0:100

^a ICHFCON[CH₂]₄CH₂ (2 mmol), Et₃As (2 mmol), RCHO (1 mmol) and Pd(PPh₃)₄ (0.1 mmol), T 110 °C, t = 24 h. ^b All products are newand were characterized by ¹H NMR, ¹⁹F NMR, IR, MS and elementalanalysis. ^c Isolated. ⁴ Ratios of*E*- and*Z*-isomers estimated on the basisof ¹⁹F NMR spectra. ^c Pd(PPh₃)₄ (0.2 mmol).

Scheme 1 Reagents and conditions: i, Et₃As, Pd(PPh₃)₄ (10 mol%), 110 °C, 24 h

amides were obtained in 4–19% yields; the total yields were 51-88%. On the basis of literature data ⁵ referring to RCH= CFCO₂Et, the chemical shift of the fluorine of the Z-isomer is upfield and that of the *E*-isomer is downfield.

This olefination method could be used with aliphatic aldehydes, both saturated and α , β -unsaturated, as well as aromatic aldehydes with different ring substituents. When an α , β -unsaturated aldehyde was used, the attack was also at the carbonyl carbon giving a 4-alkyl-1-fluorobuta-1,3-dienyl piperidino ketone.

Unfortunately, when ICHFCONH₂ was used, the desired product 2-fluoro-3-phenylpropenamide was obtained, but the yield was low (30%).

Fluoroiodomethyl piperidino ketone was prepared by a Finkelstein reaction⁶ of fluorochloromethyl piperidino ketone⁷ (Scheme 2).

Therefore, this one-pot reaction provides an efficient and practical method for the convenient synthesis of the title compounds which have not been reported previously. It is noteworthy that in the absence of $Pd(PPh_3)_4$, no reaction occurred; the Pd catalyst is required in the reaction, but the mechanism is not clear and is being investigated.

Experimental

M.p.s and b.p.s are uncorrected. IR spectra were obtained as KBr disks (solid products) and as films (liquid products) on a Shimadazu IR-440 spectrometer. ¹H NMR spectra were determined at 200 MHz using a XL-200 spectrometer, and chemical shifts are reported downfield from internal Me₄Si; ¹⁹F NMR spectra were recorded at 84.26 MHz using a FX-90 spectrometer, and chemical shifts are reported upfield from external CF₃CO₂H. J-Values are given in Hz. Mass spectra were recorded on a Finnigan-4021 mass spectrometer and HRMS spectra were recorded on a Finnigan MAT 8430 mass spectrometer. Fluorochloromethyl piperidino ketone,⁷ Pd(PPh₃)₄⁸ and triethylarsine⁹ were prepared by literature methods; the aldehydes were commercially available research grade chemicals, and were redistilled or recrystallised prior to use.

General Procedure for Preparation of 1-Fluorovinyl Piperidino Ketones.—Reactions were carried out in an oven-dried Schlenk bottle equipped with a nitrogen inlet and magnetic stirrer and flushed with nitrogen. Triethylarsine (2.0 mmol) was injected into a mixture of aldehyde 4 (1.0 mmol), fluoroiodomethyl piperidino ketone 5 (2.0 mmol) and Pd(PPh₃)₄ (0.1 mmol) under nitrogen. The mixture was stirred and heated at 110 °C for several hours after which chromatography on silica gel eluting with light petroleum (b.p. 60–90 °C)–ethyl acetate (8:2) gave the pure product 6.

2-(p-Chlorophenyl)-1-fluorovinyl piperidino ketone 6a. Yield 64%, Z/E = 93/7; m.p. 71–72.5 °C (Z); 6aZ: $\delta_{\rm F}({\rm CDCl}_3)$ 34.92 (1 F, d, J 37.6); $\delta_{\rm H}({\rm CDCl}_3)$ 1.63 (6 H, m), 3.58 (4 H, m), 6.45 (1 H, d, J 37.6), 7.32 (2 H, d, J 8) and 7.50 (2 H, d, J 8); 6aE: $\delta_{\rm F}({\rm CDCl}_3)$ 29.70 (1 F, d, J 22.0); $\delta_{\rm H}({\rm CDCl}_3)$ 1.34 (2 H, m), 1.58 (4 H, m), 3.69 (2 H, m), 3.35 (2 H, m), 6.42 (1 H, d, J 22.0) and 7.21–7.32 (4 H, m); $v_{\rm max}/{\rm cm}^{-1}$ 2940, 1630, 1500, 1450, 1280 and 825; m/z 267 (M⁺, 100), 269 (33), 268 (23), 248 (12), 247 (24.5), 218 (20), 183 (41), 156 (30.5), 155 (17), 135 (11), 120 (69) and 84 (67) (Found: C, 62.8; H, 5.5; N, 5.0. C₁₄H₁₅ClFNO requires C, 62.80; H, 5.61; N, 5.23%).

2-(p-Chlorophenyl)vinyl piperidino ketone 7a. Yield 16%; E/Z = 100/0; $\delta_{\rm H}({\rm CCl}_4)$ 1.55 (6 H, m), 3.5 (4 H, m), 6.78 (1 H, d, J 16) and 7.15-7.65 (5 H, m).

1-*Fluoro*-2-(p-*nitrophenyl*)*vinyl piperidino ketone* **6b**. Yield 68%; Z/E = 86/14; m.p. 129–130 °C (*Z*); 6b*Z*: $\delta_{\rm F}(\rm CDCl_3)$ 30.06 (1 F, d, *J* 37.4); $\delta_{\rm H}(\rm CDCl_3)$ 1.65 (6 H, m), 3.60 (4 H, m), 6.48 (1 H, d, *J* 37.4), 7.66 (2 H, d, *J* 9) and 8.21 (2 H, d, *J* 9); 6b*E*: $\delta_{\rm F}(\rm CDCl_3)$ 23.92 (1 F, d, *J* 21.6); $\delta_{\rm H}(\rm CDCl_3)$ 1.41 (2 H, m), 1.61 (4 H, m), 3.40 (2 H, m), 3.63 (2 H, m), 6.45 (1 H, d, *J* 21.6), 7.51 (2 H, d, *J* 8.4) and 8.20 (2 H, d, *J* 8.4); $v_{\rm max}/\rm cm^{-1}$ 2950, 1630, 1600, 1510, 1450, 1340, 1260, 1102, 860 and 750; *m/z* 278 (M⁺, 94), 279 (13), 259 (8), 258 (6), 194 (11), 156 (12), 136 (7), 84 (34) and 58 (100) (Found: C, 60.3; H, 5.2; N, 9.8. C₁₄H₁₅FN₂O₃ requires C, 60.4; H, 5.4; N, 10.07%).

2-(p-Nitrophenyl)vinyl piperidino ketone **7b**. Yield 19%; $E/Z = 100/0; \delta_{\rm H}(\rm CDCl_3) 1.63 (6 H, m), 3.63 (4 H, m), 7.06 (1 H, d, J 16), 7.53-7.93 (3 H, m) and 8.16-8.43 (2 H, m).$

1-Fluoro-2-(p-fluorophenyl)vinyl piperidino ketone **6c**. Yield 56%; Z/E = 95/5; m.p. 53.5–54.5 °C (Z); 6cZ: $\delta_{\rm F}(\rm CDCl_3)$ 34.54 (1 F, s) and 36.89 (1 F, d, J 38.0); $\delta_{\rm H}(\rm CDCl_3)$ 1.68 (6 H, m), 3.60 (4 H, m), 6.49 (1 H, d, J 38.0), 7.08 (2 H, t, J 8.8) and 7.58 (2 H, m); 6cE: $\delta_{\rm F}(\rm CDCl_3)$ 31.09 (1 F, d, J 22.0) and 36.16 (1 F, s); $\delta_{\rm H}(\rm CDCl_3)$ 1.31 (2 H, m), 1.57 (4 H, m), 3.35 (2 H, m), 3.59 (2

H, m), 6.42 (1 H, d, J 22.0), 7.00 (2 H, t, J 8) and 7.28 (2 H, t, J 8); v_{max}/cm^{-1} 2940, 1635, 1515, 1450, 1230, 1165, 840 and 510; m/z251 (M⁺, 100), 252 (12), 232 (10), 231 (25), 202 (34), 167 (95), 156 (28), 138 (63) and 119 (38) (Found: C, 66.6; H, 5.8; N, 5.4. C₁₄H₁₅F₂NO requires C, 66.93; H, 5.98; N, 5.58%).

2-(p-*Fluorophenyl*)vinyl piperidino ketone **7c**. Yield 9%; E/Z = 100/0; $\delta_{\rm H}({\rm CCl}_4)$ 1.1–1.5 (6 H, m), 3.43 (4 H, m), 6.65 (1 H, d, J 16) and 7.06–7.56 (5 H, m).

1-Fluoro-2-phenylvinyl piperidino ketone 6d. Yield 64%; Z/E = 95/5; b.p. 140 °C, 0.45 mmHg; $\delta_{\rm F}({\rm CCl}_4)$ 36.1 (d, J 38, Z) and 30.0 (d, J 22, E); $\delta_{\rm H}({\rm CDCl}_3)$ 1.26 (E) and 1.66 (Z) (6 H, m), 3.32 (E) and 3.57 (Z) (4 H, m), 6.41 (E) and 6.48 (Z) [1 H, d, J 22 (E), 38 (Z)] and 7.26–7.59 (5 H, m); $\nu_{\rm max}/{\rm cm}^{-1}$ 3050, 2950, 1640, 1450, 1280, 1100, 760 and 670; m/z 233 (M⁺, 100) 234 (17), 214 (9), 213 (15), 184 (12), 156 (11), 149 (23), 121 (10), 101 (19.8) and 84 (13.3) (Found: C, 71.9; H, 7.2; N, 6.0. C₁₄H₁₆FNO requires C, 72.10; H, 6.87; N, 6.01%).

2-Phenylvinyl piperidino ketone 7d. Yield 9%; E/Z = 100/0; $\delta_{\rm H}({\rm CCl}_4)$ 1.6 (6 H, m), 3.5 (4 H, m), 6.7 (1 H, d, J 16) and 7.3 (6 H, m).

2-(1,3-Benzodioxol-5-yl)-1-fluorovinyl piperidino ketone **6e**. Yield 47%; Z/E = 93/7; m.p. 92–93 °C (Z); 6eZ: $\delta_F(CDCl_3)$ 38.07 (1 F, d, J 38.4); $\delta_H(CDCl_3)$ 1.66 (6 H, m), 3.57 (4 H, m), 5.98 (2 H, s), 6.44 (1 H, d, J 38.4), 6.80 (1 H, d, J 8), 7.00 (1 H, d, J 8) and 7.26 (1 H, s); 6eE: $\delta_F(CDCl_3)$ 33.04 (1 F, d, J 21.6); $\delta_H(CDCl_3)$ 1.30–1.43 (2 H, m), 1.57–1.70 (4 H, m), 3.38 (2 H, m), 3.62 (2 H, m), 5.96 (2 H, s), 6.37 (1 H, d, J 21.6), 6.76–6.81 (2 H, m) and 7.26 (1 H, s); v_{max}/cm^{-1} 2920, 1670, 1620, 1500, 1490, 1450, 1250, 1040, 930, 910, 820, 630 and 510; m/z 277 (M⁺, 100), 278 (15), 257 (39), 228 (19), 194 (10), 165 (10), 166 (25), 135 (22), 107 (44), 84 (55) and 69 (39) (Found: C, 64.7; H, 5.7; N, 4.8. C₁₅H₁₆FNO₃ requires C, 64.98; H, 5.78; N, 5.05%).

2-(1,3-Benzodioxol-5-yl)vinyl piperidino ketone 7e. Yield 4%; $E/Z = 100/0; \delta_{H}(CCl_{4}) 1.47 (6 H, m), 3.44 (4 H, m), 5.89 (2 H, s), 6 34 (1 H, d, J 16), 6.67-7.10 (3 H, m) and 7.40 (1 H, d, J 16). 1-Fluoro-4-phenylbuta-1,3-dienyl piperidino ketone 6f. Yield 50%; <math>Z/E = 62/38;$ m.p. 79-81 °C (Z,E); 6fZ,E: $\delta_{F}(CDCl_{3})$ 38.87 (1 F, d, J 34.0); $\delta_{H}(CDCl_{3})$ 1.65 (6 H, m), 3.60 (4 H, m), 6.48 (1 H, dd, J 10, 34.0); 6.76 (1 H, d, J 16), 7.08 (1 H, dd, J 10, 16) and 7.27-7.50 (5 H, m); 6fE,E: $\delta_{F}(CDCl_{3})$ 33.9 (1 F, d, J 20.0); $\delta_{H}(CDCl_{3})$ 1.26 (2 H, m), 1.66 (4 H, m), 3.49 (2 H, m), 3.66 (2 H, m), 6.32 (1 H, dd, J 20.0, 11.4), 6.65 (1 H, d, J 15.7), 7.04 (1 H, dd, J 15.7, 11.4) and 7.26-7.46 (5 H, m); v_{max}/cm^{-1} 2900, 1660, 1635, 1455, 1285, 760 and 695; m/z 259 (M⁺, 100), 260 (18), 239 (19), 210 (10), 175 (16), 168 (9), 155 (16), 147 (24), 127 (27), 91 (7) and 84 (41) (Found: C, 73.7; H, 7.0; N, 5.15. C₁₆H₁₈FNO requires C, 74.13; H, 6.95; N, 5.41%).

4-Phenylbuta-1,3-dienyl piperidino ketone 7f. Yield 4%; E/Z = 63/37; $\delta_{\rm H}({\rm CDCl}_3)$ 1.70 (6 H, m), 3.66 (4 H, m), 6.54 (Z) and 6.76 (E) [1 H, d, J 14.8 (E), 10.8 (Z)], 6.93–6.96 (1 H, m) and 7.2–7.6 (7 H, m).

1-Fluoro-2-(2-furyl)vinyl piperidino ketone 6g. Yield 45%; Z/E = 86/14; m.p. 41.5–44.5 °C; $\delta_{\rm F}({\rm CDCl}_3)$ 33.96 (d, J 20.4, E) and 34.32 (d, J 37.2, Z); $\delta_{\rm H}({\rm CDCl}_3)$ 1.28 (E) and 1.67 (Z) (6 H, m), 3.42–3.49 (E) and 3.60 (Z) (4 H, m), 6.33 (E) and 6.64 (Z) [1 H, d, J 20.4 (E), 37.2 (Z)], 6.40–6.74 (2 H, m) and 7.30–7.50 (1 H, m); $v_{\rm max}/{\rm cm}^{-1}$ 2950, 1640, 1450, 1280, 1020 and 670; m/z 223 (M⁺, 100), 224 (25), 203 (21), 139 (60.5), 112 (52) and 84 (43) (Found: M⁺, 223.0994. C₁₂H₁₄FNO₂ requires M, 223.1009).

2-(2-Furyl)vinyl piperidino ketone 7g. Yield 7%; E/Z = 100/0; $\delta_{\rm H}({\rm CDCl}_3)$ 1.62 (6 H, m), 3.62 (4 H, m), 6.42–6.53 (2 H, m), 6.82 (1 H, d, J 16) and 7.36–7.48 (2 H, m).

2-Cyclohexyl-1-fluorovinyl piperidino ketone **6h**. Yield 50%; Z/E = 71/29; m.p. 30–32 °C (Z); 6hZ: $\delta_{\rm F}$ (CDCl₃) 41.82 (1 F, d, J 36.8); $\delta_{\rm H}$ (CDCl₃) 1.26–1.76 (16 H, m), 2.46–2.64 (1 H, m), 3.52 (4 H, m) and 5.47 (1 H, dd, J 8.4, 36.8); 6hE: $\delta_{\rm F}$ (CDCl₃) 37.41 (1 F, d, J 22.6); $\delta_{\rm H}$ (CDCl₃) 1.00–1.70 (16 H, m), 2.10– 2.30 (1 H, m), 3.40 (2 H, m), 3.54 (2 H, m) and 5.26 (1 H, dd, J 22.6, 10.8); v_{max}/cm^{-1} 2900, 1640, 1450, 1280, 1030 and 660; m/z 239 (M⁺, 61.5), 240 (20), 156 (84), 136 (46), 112 (14), 84 (100), 73 (17) and 55 (51) (Found: C, 70.4; H, 9.7; N, 5.5. C₁₄H₂₂FNO requires C, 70.29; H, 9.21; N, 5.86%).

2-Cyclohexylvinyl piperidino ketone 7h. Yield 16%; E/Z = 100/0; $\delta_{\rm H}({\rm CCl}_4)$ 1.28–1.93 (17 H, m), 3.53 (4 H, m), 6.16 (1 H, d, J 16) and 6.78 (1 H, dd, J 7, 16).

1-Fluoro-2-(2-naphthyl)vinyl piperidino ketone **6**i. Yield 50%; Z/E = 93/7; m.p. 86–88 °C (Z); 6iZ: $\delta_{\rm F}({\rm CDCl}_3)$ 35.50 (1 F, d, J 38.4); $\delta_{\rm H}({\rm CDCl}_3)$ 1.70 (6 H, m), 3.64 (4 H, m), 6.68 (1 H, d, J 38.4), 7.48–7.54 (2 H, m), 7.72–7.76 (1 H, m), 7.83–7.87 (3 H, m) and 8.05 (1 H, s); 6iE: $\delta_{\rm F}({\rm CDCl}_3)$ 30.51 (1 F, d, J 22.0); $\delta_{\rm H}({\rm CDCl}_3)$ 1.25 (2 H, m), 1.52–1.55 (4 H, m), 3.33–3.38 (2 H, m), 3.62–3.68 (2 H, m), 6.55 (1 H, d, J 22.0), 7.39–7.51 (3 H, m) and 7.77–7.81 (4 H, m); $v_{\rm max}/{\rm cm}^{-1}$ 3050, 2920, 1670, 1635, 1610, 1505, 1470, 1455, 1440, 1275, 1100, 915, 830, 740 and 480; m/z283 (M⁺, 100), 284 (27), 264 (17), 263 (69), 199 (65), 171 (54), 151 (25), 128 (11) and 84 (59) (Found: C, 76.1; H, 6.1; N, 4.8. C₁₈H₁₈FNO requires C, 76.3; H, 6.36; N, 4.95%).

2-(2-Naphthyl)vinyl piperidino ketone 7i. Yield 6%; E/Z = 100/0; $\delta_{\rm H}(\rm CDCl_3)$ 1.64 (6 H, m), 3.62 (4 H, m), 6.98 (1 H, d, J 15.8) and 7.40–7.88 (8 H, m).

2-(2,4-Dichlorophenyl)-1-fluorovinyl piperidino ketone **6**j. Yield 54%; Z/E = 85/15; $\delta_{\rm F}({\rm CDCl}_3)$ 28.05 (d, J 20.0, E), 33.81 (d, J 37.2, Z); $\delta_{\rm H}({\rm CDCl}_3)$ 1.26 (E) and 1.66 (Z) (6 H, m), 3.32 (E) and 3.60 (Z) (4 H, m), 6.63 (E) and 6.80 (Z) [1 H, d, J 20.0 (E), 37.2 (Z)], 7.19-7.31 (1 H, m), 7.38-7.43 (1 H, m) and 7.78 (1 H, d, J 8.4); $\nu_{\rm max}/{\rm cm}^{-1}$ 2900, 1640, 1470, 1440, 1275, 1100 and 670; m/z 301 (M⁺, 39), 303 (24), 282 (6), 284 (3), 268 (51), 266 (100), 219 (18), 217 (26), 156 (35), 154 (42) and 84 (15) (Found: M⁺, 301.0435. C₁₄H₁₄FNO requires M, 301.0437).

2-(2,4-Dichlorophenyl)vinyl piperidino ketone **7**j. Yield 14%; $E/Z = 100/0; \delta_{H}(CDCl_3) 1.62$ (6 H, m), 3.60 (4 H, m), 6.83 (1 H, d, J 15.8), 7.14–7.54 (3 H, m) and 7.85 (1 H, d, J 15.8).

2-(2-Bromophenyl)-1-fluorovinyl piperidino ketone **6k**. Yield 51%; Z/E = 89/11; m.p. 52–55 °C; $\delta_{\rm F}(\rm CDCl_3)$ 23.92 (d, J 20.0, E) and 30.06 (d, J 37.0, Z); $\delta_{\rm H}(\rm CDCl_3)$ 1.46 (E) and 1.68 (Z) (6 H, m), 3.26 (E) and 3.60 (Z) (4 H, m), 6.65 (E) and 6.80 (Z) [1 H, d, J 20.0 (E), 37.0 (Z)], 7.14–7.22 (1 H, m), 7.31–7.38 (1 H, m), 7.62 (1 H, d, J 8) and 7.83 (1 H, d, J 8); $v_{\rm max}/\rm cm^{-1}$ 2920, 1630, 1450, 1100, 1020, 730 and 680; m/z 311 (M⁺, 36), 313 (34), 294 (2), 292 (3), 232 (100), 148 (55), 149 (23), 120 (49) and 84 (19) (Found: C, 53.85; H, 4.7; N, 4.2. C₁₄H₁₅BrFNO requires C, 53.85; H, 4.81; N, 4.49%).

2-(2-Bromophenyl)vinyl piperidino ketone 7k. Yield 9%; E/Z = 100/0; $\delta_{\rm H}(\rm CDCl_3)$ 1.64 (6 H, m), 3.60 (4 H, m), 6.80 (1 H, d, J 15.5), 7.12-7.60 (4 H, m) and 7.88 (1 H, d, J 15.5).

Fluoroiodomethyl Piperidino Ketone 5.- A solution of NaI (22.7 g, 15 mol) in absolute acetone (60 cm³) was added to a stirred solution of fluorochloromethyl piperidino ketone (9.1 g, 0.05 mol) in acetone (10 cm^3). After the addition, the mixture was heated under reflux for ca. 3 days until the reaction was complete (19F NMR). After cooling and removal of the solvent, distilled water (50 cm³) was added to the deep red residue, and the oily material was extracted with ethyl acetate $(3 \times 150 \text{ cm}^3)$ and the extract dried and concentrated. The residue was isolated by column chromatography on silica gel with light petroleum (b.p. 60-90 °C)-ethyl acetate (8:2) as eluent to give the pure ketone 5, (8.9 g, 65%), m.p. 60–62 °C; $\delta_{\rm F}$ (CDCl₃) 78.8 (1 F, d, J 52); $\delta_{\rm H}({\rm CDCl}_3)$ 1.61 (6 H, m), 3.46 (4 H, m) and 7.19 (1 H, d, J 52); v_{max}/cm⁻¹ 2900, 2800, 1650, 1450, 1250, 1050, 1000 and 506; m/z 271(M⁺, 5), 272 (M⁺ + 1, 25), 144 (M⁺ - I, 100), 112 (99), 84 (38), 69 (90), 55 (29) and 42 (59).

Acknowledgements

Thanks are due to the National Natural Science Foundation of China and Academia Sinica for financial support.

References

- 1 E. Saifah, V. Jongbunprasert and C. T. Kelley, J. Nat. Prod., 1988, 51, 80; R. Bloch and D. Hassan-Gonzales, Tetrahedron, 1986, 42, 4975.
- 2 W. A. Lott, USP 2 103 265/1937; 2 139 687/1938; 2 251 287/1941; 2 251 946/1941; 2 310 973/1943.
- 3 R. Filler, CHEMTECH, 1974, 752; F. A. Smith, CHEMTECH, 1973, 422.
- 4 Yanchang Shen and Yuefen Zhou, Tetrahedron Lett., 1991, 32, 513.
- 5 T. Kitazuml and N. Ishikawa, Chem. Lett., 1981, 1259.
- 6 (a) H. Finkelstein, Ber. Dtsh. Chem. Ges., 1910, 43, 1528; (b) W. Treibs, J. Herrmann and G. Zimmermann, Chem. Ber., 1960, 93, 2198.
- 7 M. Cecilia Luz and W. P. Dailey, Org. Prep. Proceed. Int., 1987, 19, 468.
- 8 D. R. Cousion, Inorg. Synth., 1972, 13, 121.
- 9 W. J. C. Dyke and W. J. Jones, J. Chem. Soc., 1930, 2426.

Paper 2/03568E Received 6th July 1992 Accepted 26th August 1992